EconPapers    
Economics at your fingertips  
 

Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures

Guangzhou Wang (), Haley M. Burrill, Laura Y. Podzikowski, Maarten B. Eppinga, Fusuo Zhang, Junling Zhang, Peggy A. Schultz and James D. Bever ()
Additional contact information
Guangzhou Wang: National Academy of Agriculture Green Development, China Agricultural University
Haley M. Burrill: University of Kansas
Laura Y. Podzikowski: University of Kansas
Maarten B. Eppinga: University of Zurich
Fusuo Zhang: National Academy of Agriculture Green Development, China Agricultural University
Junling Zhang: National Academy of Agriculture Green Development, China Agricultural University
Peggy A. Schultz: University of Kansas
James D. Bever: University of Kansas

Nature Communications, 2023, vol. 14, issue 1, 1-11

Abstract: Abstract Productivity benefits from diversity can arise when compatible pathogen hosts are buffered by unrelated neighbors, diluting pathogen impacts. However, the generality of pathogen dilution has been controversial and rarely tested within biodiversity manipulations. Here, we test whether soil pathogen dilution generates diversity- productivity relationships using a field biodiversity-manipulation experiment, greenhouse assays, and feedback modeling. We find that the accumulation of specialist pathogens in monocultures decreases host plant yields and that pathogen dilution predicts plant productivity gains derived from diversity. Pathogen specialization predicts the strength of the negative feedback between plant species in greenhouse assays. These feedbacks significantly predict the overyielding measured in the field the following year. This relationship strengthens when accounting for the expected dilution of pathogens in mixtures. Using a feedback model, we corroborate that pathogen dilution drives overyielding. Combined empirical and theoretical evidence indicate that specialist pathogen dilution generates overyielding and suggests that the risk of losing productivity benefits from diversity may be highest where environmental change decouples plant-microbe interactions.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-44253-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44253-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-44253-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44253-4