EconPapers    
Economics at your fingertips  
 

Microbial adaptation to spaceflight is correlated with bacteriophage-encoded functions

Iris Irby and Jared T. Broddrick ()
Additional contact information
Iris Irby: NASA Ames Research Center
Jared T. Broddrick: NASA Ames Research Center

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Evidence from the International Space Station suggests microbial populations are rapidly adapting to the spacecraft environment; however, the mechanism of this adaptation is not understood. Bacteriophages are prolific mediators of bacterial adaptation on Earth. Here we survey 245 genomes sequenced from bacterial strains isolated on the International Space Station for dormant (lysogenic) bacteriophages. Our analysis indicates phage-associated genes are significantly different between spaceflight strains and their terrestrial counterparts. In addition, we identify 283 complete prophages, those that could initiate bacterial lysis and infect additional hosts, of which 21% are novel. These prophage regions encode functions that correlate with increased persistence in extreme environments, such as spaceflight, to include antimicrobial resistance and virulence, DNA damage repair, and dormancy. Our results correlate microbial adaptation in spaceflight to bacteriophage-encoded functions that may impact human health in spaceflight.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-42104-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-42104-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-42104-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-42104-w