EconPapers    
Economics at your fingertips  
 

Competing itinerant and local spin interactions in kagome metal FeGe

Lebing Chen, Xiaokun Teng, Hengxin Tan, Barry L. Winn, Garrett E. Granroth, Feng Ye, D. H. Yu, R. A. Mole, Bin Gao, Binghai Yan, Ming Yi and Pengcheng Dai ()
Additional contact information
Lebing Chen: Rice University
Xiaokun Teng: Rice University
Hengxin Tan: Weizmann Institute of Science
Barry L. Winn: Oak Ridge National Laboratory
Garrett E. Granroth: Oak Ridge National Laboratory
Feng Ye: Oak Ridge National Laboratory
D. H. Yu: Australian Nuclear Science and Technology Organisation
R. A. Mole: Australian Nuclear Science and Technology Organisation
Bin Gao: Rice University
Binghai Yan: Weizmann Institute of Science
Ming Yi: Rice University
Pengcheng Dai: Rice University

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract The combination of a geometrically frustrated lattice, and similar energy scales between degrees of freedom endows two-dimensional Kagome metals with a rich array of quantum phases and renders them ideal for studying strong electron correlations and band topology. The Kagome metal, FeGe is a noted example of this, exhibiting A-type collinear antiferromagnetic (AFM) order at TN ≈ 400 K, then establishes a charge density wave (CDW) phase coupled with AFM ordered moment below TCDW ≈ 110 K, and finally forms a c-axis double cone AFM structure around TCanting ≈ 60 K. Here we use neutron scattering to demonstrate the presence of gapless incommensurate spin excitations associated with the double cone AFM structure of FeGe at temperatures well above TCanting and TCDW that merge into gapped commensurate spin waves from the A-type AFM order. Commensurate spin waves follow the Bose factor and fit the Heisenberg Hamiltonian, while the incommensurate spin excitations, emerging below TN where AFM order is commensurate, start to deviate from the Bose factor around TCDW, and peaks at TCanting. This is consistent with a critical scattering of a second order magnetic phase transition with decreasing temperature. By comparing these results with density functional theory calculations, we conclude that the incommensurate magnetic structure arises from the nested Fermi surfaces of itinerant electrons and the formation of a spin density wave order.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-44190-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44190-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-44190-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44190-2