Effective binning of metagenomic contigs using contrastive multi-view representation learning
Ziye Wang,
Ronghui You,
Haitao Han,
Wei Liu,
Fengzhu Sun and
Shanfeng Zhu ()
Additional contact information
Ziye Wang: Fudan University
Ronghui You: Fudan University
Haitao Han: Fudan University
Wei Liu: Fudan University
Fengzhu Sun: University of Southern California
Shanfeng Zhu: Fudan University
Nature Communications, 2024, vol. 15, issue 1, 1-14
Abstract:
Abstract Contig binning plays a crucial role in metagenomic data analysis by grouping contigs from the same or closely related genomes. However, existing binning methods face challenges in practical applications due to the diversity of data types and the difficulties in efficiently integrating heterogeneous information. Here, we introduce COMEBin, a binning method based on contrastive multi-view representation learning. COMEBin utilizes data augmentation to generate multiple fragments (views) of each contig and obtains high-quality embeddings of heterogeneous features (sequence coverage and k-mer distribution) through contrastive learning. Experimental results on multiple simulated and real datasets demonstrate that COMEBin outperforms state-of-the-art binning methods, particularly in recovering near-complete genomes from real environmental samples. COMEBin outperforms other binning methods remarkably when integrated into metagenomic analysis pipelines, including the recovery of potentially pathogenic antibiotic-resistant bacteria (PARB) and moderate or higher quality bins containing potential biosynthetic gene clusters (BGCs).
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-44290-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44290-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-44290-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().