EconPapers    
Economics at your fingertips  
 

MENDER: fast and scalable tissue structure identification in spatial omics data

Zhiyuan Yuan ()
Additional contact information
Zhiyuan Yuan: Fudan University Pudong Medical Center, Fudan University

Nature Communications, 2024, vol. 15, issue 1, 1-17

Abstract: Abstract Tissue structure identification is a crucial task in spatial omics data analysis, for which increasingly complex models, such as Graph Neural Networks and Bayesian networks, are employed. However, whether increased model complexity can effectively lead to improved performance is a notable question in the field. Inspired by the consistent observation of cellular neighborhood structures across various spatial technologies, we propose Multi-range cEll coNtext DEciphereR (MENDER), for tissue structure identification. Applied on datasets of 3 brain regions and a whole-brain atlas, MENDER, with biology-driven design, offers substantial improvements over modern complex models while automatically aligning labels across slices, despite using much less running time than the second-fastest. MENDER’s identification power allows the uncovering of previously overlooked spatial domains that exhibit strong associations with brain aging. MENDER’s scalability makes it freely appliable on a million-level brain spatial atlas. MENDER’s discriminative power enables the differentiation of breast cancer patient subtypes obscured by single-cell analysis.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-44367-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44367-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-44367-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44367-9