Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport
Artem Musiienko (),
Fengjiu Yang,
Thomas William Gries,
Chiara Frasca,
Dennis Friedrich,
Amran Al-Ashouri,
Elifnaz Sağlamkaya,
Felix Lang,
Danny Kojda,
Yi-Teng Huang,
Valerio Stacchini,
Robert L. Z. Hoye,
Mahshid Ahmadi,
Andrii Kanak and
Antonio Abate
Additional contact information
Artem Musiienko: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Fengjiu Yang: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Thomas William Gries: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Chiara Frasca: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Dennis Friedrich: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Amran Al-Ashouri: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Elifnaz Sağlamkaya: University of Potsdam
Felix Lang: University of Potsdam
Danny Kojda: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Yi-Teng Huang: University of Cambridge
Valerio Stacchini: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Robert L. Z. Hoye: University of Oxford
Mahshid Ahmadi: The University of Tennessee Knoxville
Andrii Kanak: ETH Zürich
Antonio Abate: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Nature Communications, 2024, vol. 15, issue 1, 1-11
Abstract:
Abstract The knowledge of minority and majority charge carrier properties enables controlling the performance of solar cells, transistors, detectors, sensors, and LEDs. Here, we developed the constant light induced magneto transport method which resolves electron and hole mobility, lifetime, diffusion coefficient and length, and quasi-Fermi level splitting. We demonstrate the implication of the constant light induced magneto transport for silicon and metal halide perovskite films. We resolve the transport properties of electrons and holes predicting the material’s effectiveness for solar cell application without making the full device. The accessibility of fourteen material parameters paves the way for in-depth exploration of causal mechanisms limiting the efficiency and functionality of material structures. To demonstrate broad applicability, we further characterized twelve materials with drift mobilities spanning from 10–3 to 103 cm2V–1s–1 and lifetimes varying between 10–9 and 10–3 seconds. The universality of our method its potential to advance optoelectronic devices in various technological fields.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-44418-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44418-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-44418-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().