Lithiated porous silicon nanowires stimulate periodontal regeneration
Martti Kaasalainen,
Ran Zhang,
Priya Vashisth,
Anahid Ahmadi Birjandi,
Mark S’Ari,
Davide Alessandro Martella,
Mark Isaacs,
Ermei Mäkilä,
Cong Wang,
Evelin Moldenhauer,
Paul Clarke,
Alessandra Pinna,
Xuechen Zhang,
Salman A. Mustfa,
Valeria Caprettini,
Alexander P. Morrell,
Eileen Gentleman,
Delia S. Brauer,
Owen Addison,
Xuehui Zhang,
Mads Bergholt,
Khuloud Al-Jamal,
Ana Angelova Volponi,
Jarno Salonen,
Nicole Hondow,
Paul Sharpe and
Ciro Chiappini ()
Additional contact information
Martti Kaasalainen: King’s College London
Ran Zhang: Peking University School and Hospital of Stomatology
Priya Vashisth: King’s College London
Anahid Ahmadi Birjandi: King’s College London
Mark S’Ari: University of Leeds
Davide Alessandro Martella: King’s College London
Mark Isaacs: University College London
Ermei Mäkilä: University of Turku
Cong Wang: King’s College London
Evelin Moldenhauer: Postnova Analytics GmbH
Paul Clarke: Postnova Analytics GmbH
Alessandra Pinna: Imperial College London
Xuechen Zhang: King’s College London
Salman A. Mustfa: King’s College London
Valeria Caprettini: King’s College London
Alexander P. Morrell: King’s College London
Eileen Gentleman: King’s College London
Delia S. Brauer: Friedrich Schiller University Jena
Owen Addison: King’s College London
Xuehui Zhang: Peking University School and Hospital of Stomatology
Mads Bergholt: King’s College London
Khuloud Al-Jamal: King’s College London
Ana Angelova Volponi: King’s College London
Jarno Salonen: University of Turku
Nicole Hondow: University of Leeds
Paul Sharpe: King’s College London
Ciro Chiappini: King’s College London
Nature Communications, 2024, vol. 15, issue 1, 1-16
Abstract:
Abstract Periodontal disease is a significant burden for oral health, causing progressive and irreversible damage to the support structure of the tooth. This complex structure, the periodontium, is composed of interconnected soft and mineralised tissues, posing a challenge for regenerative approaches. Materials combining silicon and lithium are widely studied in periodontal regeneration, as they stimulate bone repair via silicic acid release while providing regenerative stimuli through lithium activation of the Wnt/β-catenin pathway. Yet, existing materials for combined lithium and silicon release have limited control over ion release amounts and kinetics. Porous silicon can provide controlled silicic acid release, inducing osteogenesis to support bone regeneration. Prelithiation, a strategy developed for battery technology, can introduce large, controllable amounts of lithium within porous silicon, but yields a highly reactive material, unsuitable for biomedicine. This work debuts a strategy to lithiate porous silicon nanowires (LipSiNs) which generates a biocompatible and bioresorbable material. LipSiNs incorporate lithium to between 1% and 40% of silicon content, releasing lithium and silicic acid in a tailorable fashion from days to weeks. LipSiNs combine osteogenic, cementogenic and Wnt/β-catenin stimuli to regenerate bone, cementum and periodontal ligament fibres in a murine periodontal defect.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-44581-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44581-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-44581-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().