Giant optical polarisation rotations induced by a single quantum dot spin
E. Mehdi,
M. Gundín,
C. Millet,
N. Somaschi,
A. Lemaître,
I. Sagnes,
L. Gratiet,
D. A. Fioretto,
N. Belabas,
O. Krebs,
P. Senellart and
L. Lanco ()
Additional contact information
E. Mehdi: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
M. Gundín: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
C. Millet: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
N. Somaschi: Quandela
A. Lemaître: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
I. Sagnes: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
L. Gratiet: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
D. A. Fioretto: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
N. Belabas: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
O. Krebs: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
P. Senellart: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
L. Lanco: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
Nature Communications, 2024, vol. 15, issue 1, 1-9
Abstract:
Abstract In the framework of optical quantum computing and communications, a major objective consists in building receiving nodes implementing conditional operations on incoming photons, using a single stationary qubit. In particular, the quest for scalable nodes motivated the development of cavity-enhanced spin-photon interfaces with solid-state emitters. An important challenge remains, however, to produce a stable, controllable, spin-dependent photon state, in a deterministic way. Here we use an electrically-contacted pillar-based cavity, embedding a single InGaAs quantum dot, to demonstrate giant polarisation rotations induced on reflected photons by a single electron spin. A complete tomography approach is introduced to extrapolate the output polarisation Stokes vector, conditioned by a specific spin state, in presence of spin and charge fluctuations. We experimentally approach polarisation states conditionally rotated by $$\frac{\pi }{2}$$ π 2 , π, and $$-\frac{\pi }{2}$$ − π 2 in the Poincaré sphere with extrapolated fidelities of (97 ± 1) %, (84 ± 7) %, and (90 ± 8) %, respectively. We find that an enhanced light-matter coupling, together with limited cavity birefringence and reduced spectral fluctuations, allow targeting most conditional rotations in the Poincaré sphere, with a control both in longitude and latitude. Such polarisation control may prove crucial to adapt spin-photon interfaces to various configurations and protocols for quantum information.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-44651-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44651-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-44651-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().