C−F bond activation enables synthesis of aryl difluoromethyl bicyclopentanes as benzophenone-type bioisosteres
Mingshuo Chen,
Yuang Cui,
Xiaoping Chen,
Rui Shang and
Xiaheng Zhang ()
Additional contact information
Mingshuo Chen: University of Chinese Academy of Sciences
Yuang Cui: University of Chinese Academy of Sciences
Xiaoping Chen: University of Chinese Academy of Sciences
Rui Shang: The University of Tokyo
Xiaheng Zhang: University of Chinese Academy of Sciences
Nature Communications, 2024, vol. 15, issue 1, 1-10
Abstract:
Abstract Bioisosteric design has become an essential approach in the development of drug molecules. Recent advancements in synthetic methodologies have enabled the rapid adoption of this strategy into drug discovery programs. Consequently, conceptionally innovative practices would be appreciated by the medicinal chemistry community. Here we report an expeditous synthetic method for synthesizing aryl difluoromethyl bicyclopentane (ADB) as a bioisostere of the benzophenone core. This approach involves the merger of light-driven C−F bond activation and strain-release chemistry under the catalysis of a newly designed N-anionic-based organic photocatalyst. This defluorinative coupling methodology enables the direct conversion of a wide variety of commercially available trifluoromethylaromatic C−F bonds (more than 70 examples) into the corresponding difluoromethyl bicyclo[1.1.1]pentanes (BCP) arenes/difluoromethyl BCP boronates in a single step. The strategy can also be applied to [3.1.1]and [4.1.1]propellane systems, providing access to analogues with different geometries. Moreover, we have successfully used this protocol to rapidly prepare ADB-substituted analogues of the bioactive molecule Adiporon. Biological testing has shown that the ADB scaffold has the potential to enhance the pharmacological properties of benzophenone-type drug candidates.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-44653-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44653-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-44653-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().