Biomimetic Bouligand chiral fibers array enables strong and superelastic ceramic aerogels
Hongxing Wang,
Longdi Cheng,
Jianyong Yu,
Yang Si () and
Bin Ding ()
Additional contact information
Hongxing Wang: Donghua University
Longdi Cheng: Donghua University
Jianyong Yu: Donghua University
Yang Si: Donghua University
Bin Ding: Donghua University
Nature Communications, 2024, vol. 15, issue 1, 1-10
Abstract:
Abstract Ceramic aerogels are often used when thermal insulation materials are desired; however, they are still plagued by poor mechanical stability under thermal shock. Here, inspired by the dactyl clubs of mantis shrimp found in nature, which form by directed assembly into hierarchical, chiral and Bouligand (twisted plywood) structure exhibiting superior mechanical properties, we present a compositional and structural engineering strategy to develop strong, superelastic and fatigue resistance ceramic aerogels with chiral fibers array resembling Bouligand architecture. Benefiting from the stress dissipation, crack torsion and mechanical reinforcement of micro-/nano-scale Bouligand array, the tensile strength of these aerogels (170.38 MPa) is between one and two orders of magnitude greater than that of state-of-the-art nanofibrous aerogels. In addition, the developed aerogels feature low density and thermal conductivity, good compressive properties with rapid recovery from 80 % strain, and thermal stability up to 1200 °C, making them ideal for thermal insulation applications.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-44657-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44657-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-44657-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().