Functional neuronal circuits emerge in the absence of developmental activity
Dániel L. Barabási (),
Gregor F. P. Schuhknecht and
Florian Engert
Additional contact information
Dániel L. Barabási: Harvard University
Gregor F. P. Schuhknecht: Harvard University
Florian Engert: Harvard University
Nature Communications, 2024, vol. 15, issue 1, 1-14
Abstract:
Abstract The complex neuronal circuitry of the brain develops from limited information contained in the genome. After the genetic code instructs the birth of neurons, the emergence of brain regions, and the formation of axon tracts, it is believed that temporally structured spiking activity shapes circuits for behavior. Here, we challenge the learning-dominated assumption that spiking activity is required for circuit formation by quantifying its contribution to the development of visually-guided swimming in the larval zebrafish. We found that visual experience had no effect on the emergence of the optomotor response (OMR) in dark-reared zebrafish. We then raised animals while pharmacologically silencing action potentials with the sodium channel blocker tricaine. After washout of the anesthetic, fish could swim and performed with 75–90% accuracy in the OMR paradigm. Brain-wide imaging confirmed that neuronal circuits came ‘online’ fully tuned, without requiring activity-dependent plasticity. Thus, complex sensory-guided behaviors can emerge through activity-independent developmental mechanisms.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-44681-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44681-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-44681-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().