EconPapers    
Economics at your fingertips  
 

Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction

Mingxu Sun, Jiamin Cheng and Miho Yamauchi ()
Additional contact information
Mingxu Sun: Kyushu University
Jiamin Cheng: Kyushu University
Miho Yamauchi: Kyushu University

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract Carbon dioxide (CO2) electroreduction reaction (CO2RR) offers a promising strategy for the conversion of CO2 into valuable chemicals and fuels. CO2RR in acidic electrolytes would have various advantages due to the suppression of carbonate formation. However, its reaction rate is severely limited by the slow CO2 diffusion due to the absence of hydroxide that facilitates the CO2 diffusion in an acidic environment. Here, we design an optimal architecture of a gas diffusion electrode (GDE) employing a copper-based ultrathin superhydrophobic macroporous layer, in which the CO2 diffusion is highly enhanced. This GDE retains its applicability even under mechanical deformation conditions. The CO2RR in acidic electrolytes exhibits a Faradaic efficiency of 87% with a partial current density $$( {j}_{{{{\rm{C}}}}_{2+}})$$ ( j C 2 + ) of −1.6 A cm−2 for multicarbon products (C2+), and $$ {j}_{{{{{{\rm{C}}}}}}_{2+}}$$ j C 2 + of −0.34 A cm−2 when applying dilute 25% CO2. In a highly acidic environment, C2+ formation occurs via a second order reaction which is controlled by both the catalyst and its hydroxide.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-024-44722-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44722-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-44722-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44722-4