Experimental study on chorus emission in an artificial magnetosphere
Haruhiko Saitoh (),
Masaki Nishiura,
Naoki Kenmochi and
Zensho Yoshida
Additional contact information
Haruhiko Saitoh: The University of Tokyo
Masaki Nishiura: The University of Tokyo
Naoki Kenmochi: National Institute for Fusion Science
Zensho Yoshida: The University of Tokyo
Nature Communications, 2024, vol. 15, issue 1, 1-11
Abstract:
Abstract Wave particle interaction plays an important role in geospace and space weather phenomena. Whistler mode chorus emissions, characterized by non-linear growth and frequency chirping, are common in planetary magnetospheres. They are regarded as the origin of relativistic acceleration of particles in the radiation belts and pulsating aurora. Intensive theoretical investigations and spacecraft observations have revealed several important features of chorus emissions. However, there is a need to conduct high-resolution and reproducible controlled laboratory experiments to deepen the understanding of space weather. Here, we present the spontaneous excitation of chirping whistler waves in hot-electron high-β plasma (β is the ratio of the plasma pressure to the magnetic pressure) in an “artificial magnetosphere”, a levitated dipole experiment. These experiments suggest that the generation and nonlinear growth of coherent chorus emissions are ubiquitous in dipole magnetic configuration. We anticipate that these experiments will accelerate the laboratory investigation of space weather phenomena.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-44977-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44977-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-44977-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().