EconPapers    
Economics at your fingertips  
 

Improved machine learning algorithm for predicting ground state properties

Laura Lewis, Hsin-Yuan Huang (), Viet T. Tran, Sebastian Lehner, Richard Kueng and John Preskill
Additional contact information
Laura Lewis: California Institute of Technology
Hsin-Yuan Huang: California Institute of Technology
Viet T. Tran: Johannes Kepler University
Sebastian Lehner: Johannes Kepler University
Richard Kueng: Johannes Kepler University
John Preskill: California Institute of Technology

Nature Communications, 2024, vol. 15, issue 1, 1-8

Abstract: Abstract Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only $${{{{{{{\mathcal{O}}}}}}}}(\log (n))$$ O ( log ( n ) ) data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require $${{{{{{{\mathcal{O}}}}}}}}({n}^{c})$$ O ( n c ) data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as $${{{{{{{\mathcal{O}}}}}}}}(n\log n)$$ O ( n log n ) in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45014-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45014-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45014-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45014-7