EconPapers    
Economics at your fingertips  
 

Wandering principal optical axes in van der Waals triclinic materials

Georgy A. Ermolaev, Kirill V. Voronin, Adilet N. Toksumakov, Dmitriy V. Grudinin, Ilia M. Fradkin, Arslan Mazitov, Aleksandr S. Slavich, Mikhail K. Tatmyshevskiy, Dmitry I. Yakubovsky, Valentin R. Solovey, Roman V. Kirtaev, Sergey M. Novikov, Elena S. Zhukova, Ivan Kruglov, Andrey A. Vyshnevyy, Denis G. Baranov, Davit A. Ghazaryan, Aleksey V. Arsenin, Luis Martin-Moreno, Valentyn S. Volkov and Kostya S. Novoselov ()
Additional contact information
Georgy A. Ermolaev: Dubai Investment Park First
Kirill V. Voronin: Donostia International Physics Center (DIPC)
Adilet N. Toksumakov: Moscow Center for Advanced Studies
Dmitriy V. Grudinin: Dubai Investment Park First
Ilia M. Fradkin: Dubai Investment Park First
Arslan Mazitov: École Polytechnique Fédérale de Lausanne
Aleksandr S. Slavich: Moscow Center for Advanced Studies
Mikhail K. Tatmyshevskiy: Moscow Center for Advanced Studies
Dmitry I. Yakubovsky: Moscow Center for Advanced Studies
Valentin R. Solovey: Dubai Investment Park First
Roman V. Kirtaev: Dubai Investment Park First
Sergey M. Novikov: Moscow Center for Advanced Studies
Elena S. Zhukova: Moscow Center for Advanced Studies
Ivan Kruglov: Dubai Investment Park First
Andrey A. Vyshnevyy: Dubai Investment Park First
Denis G. Baranov: Moscow Center for Advanced Studies
Davit A. Ghazaryan: Moscow Center for Advanced Studies
Aleksey V. Arsenin: Dubai Investment Park First
Luis Martin-Moreno: CSIC-Universidad de Zaragoza
Valentyn S. Volkov: Dubai Investment Park First
Kostya S. Novoselov: University of Manchester

Nature Communications, 2024, vol. 15, issue 1, 1-8

Abstract: Abstract Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matter interaction. Their orientation – an orthogonal Cartesian basis that diagonalizes the permittivity tensor, is often assumed stationary. Here, we show that the low-symmetry triclinic crystalline structure of van der Waals rhenium disulfide and rhenium diselenide is characterized by wandering principal optical axes in the space-wavelength domain with above π/2 degree of rotation for in-plane components. In turn, this leads to wavelength-switchable propagation directions of their waveguide modes. The physical origin of wandering principal optical axes is explained using a multi-exciton phenomenological model and ab initio calculations. We envision that the wandering principal optical axes of the investigated low-symmetry triclinic van der Waals crystals offer a platform for unexplored anisotropic phenomena and nanophotonic applications.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45266-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45266-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45266-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45266-3