EconPapers    
Economics at your fingertips  
 

The rise of high-entropy battery materials

Bin Ouyang () and Yan Zeng ()
Additional contact information
Bin Ouyang: Florida State University
Yan Zeng: Florida State University

Nature Communications, 2024, vol. 15, issue 1, 1-5

Abstract: The emergence of high-entropy materials has inspired the exploration of novel materials in diverse technologies. In electrochemical energy storage, high-entropy design has shown advantageous impacts on battery materials such as suppressing undesired short-range order, frustrating energy landscape, decreasing volumetric change and reducing the reliance on critical metals. This comment addresses the definition and potential improper use of the term “high entropy” in the context of battery materials design, highlights the unique properties of high-entropy materials in battery applications, and outlines the remaining challenges in the synthesis, characterization, and computational modeling of high-entropy battery materials.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45309-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45309-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45309-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45309-9