EconPapers    
Economics at your fingertips  
 

Imaging the state-to-state charge-transfer dynamics between the spin-orbit excited Ar+(2P1/2) ion and N2

Guodong Zhang, Dandan Lu, Hua Guo () and Hong Gao ()
Additional contact information
Guodong Zhang: Chinese Academy of Sciences
Dandan Lu: University of New Mexico
Hua Guo: University of New Mexico
Hong Gao: Chinese Academy of Sciences

Nature Communications, 2024, vol. 15, issue 1, 1-7

Abstract: Abstract Ar++N2 → Ar+N2+ has served as a paradigm for charge-transfer dynamics studies during the last several decades. Despite significant experimental and theoretical efforts on this model system, state-resolved experimental investigations on the microscopic charge-transfer mechanism between the spin-orbit excited Ar+(2P1/2) ion and N2 have been rare. Here, we measure the first quantum state-to-state differential cross sections for Ar++N2 → Ar+N2+ with the Ar+ ion prepared exclusively in the spin-orbit excited state 2P1/2 on a crossed-beam setup with three-dimensional velocity-map imaging. Trajectory surface-hopping calculations qualitatively reproduce the vibrationally dependent rotational and angular distributions of the N2+ product. Both the scattering images and theoretical calculations show that the charge-transfer dynamics of the spin-orbit excited Ar+(2P1/2) ion differs significantly from that of the spin-orbit ground Ar+(2P3/2) when colliding with N2. Such state-to-state information makes quantitative understanding of this benchmark charge-transfer reaction within reach.

Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45344-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45344-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45344-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45344-6