EconPapers    
Economics at your fingertips  
 

Electric control of optically-induced magnetization dynamics in a van der Waals ferromagnetic semiconductor

Freddie Hendriks, Rafael R. Rojas-Lopez, Bert Koopmans and Marcos H. D. Guimarães ()
Additional contact information
Freddie Hendriks: University of Groningen
Rafael R. Rojas-Lopez: University of Groningen
Bert Koopmans: Eindhoven University of Technology
Marcos H. D. Guimarães: University of Groningen

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract Electric control of magnetization dynamics in two-dimensional (2D) magnetic materials is an essential step for the development of novel spintronic nanodevices. Electrostatic gating has been shown to greatly affect the static magnetic properties of some van der Waals magnets, but the control over their magnetization dynamics is still largely unexplored. Here we show that the optically-induced magnetization dynamics in the van der Waals ferromagnet Cr2Ge2Te6 can be effectively controlled by electrostatic gates, with a one order of magnitude change in the precession amplitude and over 10% change in the internal effective field. In contrast to the purely thermally-induced mechanisms previously reported for 2D magnets, we find that coherent opto-magnetic phenomena play a major role in the excitation of magnetization dynamics in Cr2Ge2Te6. Our work sets the first steps towards electric control over the magnetization dynamics in 2D ferromagnetic semiconductors, demonstrating their potential for applications in ultrafast opto-magnonic devices.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45623-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45623-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45623-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45623-2