Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks
Hojin Jang () and
Frank Tong ()
Additional contact information
Hojin Jang: Vanderbilt Vision Research Center, Vanderbilt University
Frank Tong: Vanderbilt Vision Research Center, Vanderbilt University
Nature Communications, 2024, vol. 15, issue 1, 1-14
Abstract:
Abstract Whenever a visual scene is cast onto the retina, much of it will appear degraded due to poor resolution in the periphery; moreover, optical defocus can cause blur in central vision. However, the pervasiveness of blurry or degraded input is typically overlooked in the training of convolutional neural networks (CNNs). We hypothesized that the absence of blurry training inputs may cause CNNs to rely excessively on high spatial frequency information for object recognition, thereby causing systematic deviations from biological vision. We evaluated this hypothesis by comparing standard CNNs with CNNs trained on a combination of clear and blurry images. We show that blur-trained CNNs outperform standard CNNs at predicting neural responses to objects across a variety of viewing conditions. Moreover, blur-trained CNNs acquire increased sensitivity to shape information and greater robustness to multiple forms of visual noise, leading to improved correspondence with human perception. Our results provide multi-faceted neurocomputational evidence that blurry visual experiences may be critical for conferring robustness to biological visual systems.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-45679-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45679-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-45679-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().