EconPapers    
Economics at your fingertips  
 

Achieving environmental stability in an atomically thin quantum spin Hall insulator via graphene intercalation

Cedric Schmitt, Jonas Erhardt, Philipp Eck, Matthias Schmitt, Kyungchan Lee, Philipp Keßler, Tim Wagner, Merit Spring, Bing Liu, Stefan Enzner, Martin Kamp, Vedran Jovic, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Timur Kim, Cephise Cacho, Tien-Lin Lee, Giorgio Sangiovanni, Simon Moser and Ralph Claessen ()
Additional contact information
Cedric Schmitt: Universität Würzburg
Jonas Erhardt: Universität Würzburg
Philipp Eck: Universität Würzburg
Matthias Schmitt: Universität Würzburg
Kyungchan Lee: Universität Würzburg
Philipp Keßler: Universität Würzburg
Tim Wagner: Universität Würzburg
Merit Spring: Universität Würzburg
Bing Liu: Universität Würzburg
Stefan Enzner: Universität Würzburg
Martin Kamp: Universität Würzburg
Vedran Jovic: Institute of Geological and Nuclear Science
Chris Jozwiak: Lawrence Berkeley National Laboratory
Aaron Bostwick: Lawrence Berkeley National Laboratory
Eli Rotenberg: Lawrence Berkeley National Laboratory
Timur Kim: Diamond Light Source
Cephise Cacho: Diamond Light Source
Tien-Lin Lee: Diamond Light Source
Giorgio Sangiovanni: Universität Würzburg
Simon Moser: Universität Würzburg
Ralph Claessen: Universität Würzburg

Nature Communications, 2024, vol. 15, issue 1, 1-7

Abstract: Abstract Atomic monolayers on semiconductor surfaces represent an emerging class of functional quantum materials in the two-dimensional limit — ranging from superconductors and Mott insulators to ferroelectrics and quantum spin Hall insulators. Indenene, a triangular monolayer of indium with a gap of ~ 120 meV is a quantum spin Hall insulator whose micron-scale epitaxial growth on SiC(0001) makes it technologically relevant. However, its suitability for room-temperature spintronics is challenged by the instability of its topological character in air. It is imperative to develop a strategy to protect the topological nature of indenene during ex situ processing and device fabrication. Here we show that intercalation of indenene into epitaxial graphene provides effective protection from the oxidising environment, while preserving an intact topological character. Our approach opens a rich realm of ex situ experimental opportunities, priming monolayer quantum spin Hall insulators for realistic device fabrication and access to topologically protected edge channels.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45816-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45816-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45816-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45816-9