EconPapers    
Economics at your fingertips  
 

Anharmonic strong-coupling effects at the origin of the charge density wave in CsV3Sb5

Ge He (), Leander Peis, Emma Frances Cuddy, Zhen Zhao, Dong Li, Yuhang Zhang, Romona Stumberger, Brian Moritz, Haitao Yang (), Hongjun Gao, Thomas Peter Devereaux () and Rudi Hackl ()
Additional contact information
Ge He: Bayerische Akademie der Wissenschaften
Leander Peis: Bayerische Akademie der Wissenschaften
Emma Frances Cuddy: Stanford University
Zhen Zhao: Chinese Academy of Sciences
Dong Li: Chinese Academy of Sciences
Yuhang Zhang: Chinese Academy of Sciences
Romona Stumberger: Bayerische Akademie der Wissenschaften
Brian Moritz: SLAC National Accelerator Laboratory and Stanford University
Haitao Yang: Chinese Academy of Sciences
Hongjun Gao: Chinese Academy of Sciences
Thomas Peter Devereaux: Stanford University
Rudi Hackl: Bayerische Akademie der Wissenschaften

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract The formation of charge density waves is a long-standing open problem, particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently further underpin this notion. Here, we study the Kagome metal CsV3Sb5 using polarized inelastic light scattering and density functional theory calculations. We observe a significant gap anisotropy with $$2{\Delta }_{\max }/{k}_{{{{{{{{\rm{B}}}}}}}}}{T}_{{{{{{{{\rm{CDW}}}}}}}}}\, \approx \, 20$$ 2 Δ max / k B T CDW ≈ 20 , far beyond the prediction of mean-field theory. The analysis of the A1g and E2g phonons, including those emerging below TCDW, indicates strong phonon-phonon coupling, presumably mediated by a strong electron-phonon interaction. Similarly, the asymmetric Fano-type lineshape of the A1g amplitude mode suggests strong electron-phonon coupling below TCDW. The large electronic gap, the enhanced anharmonic phonon-phonon coupling, and the Fano shape of the amplitude mode combined are more supportive of a strong-coupling phonon-driven charge density wave transition than of a Fermi surface instability or an exotic mechanism in CsV3Sb5.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45865-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45865-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45865-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45865-0