EconPapers    
Economics at your fingertips  
 

Deglaciation-enhanced mantle CO2 fluxes at Yellowstone imply positive climate feedback

Fiona Clerc (), Mark D. Behn and Brent M. Minchew
Additional contact information
Fiona Clerc: Previously at: MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering
Mark D. Behn: Boston College
Brent M. Minchew: Massachusetts Institute of Technology

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Mantle melt generation in response to glacial unloading has been linked to enhanced magmatic volatile release in Iceland and global eruptive records. It is unclear whether this process is important in systems lacking evidence of enhanced eruptions. The deglaciation of the Yellowstone ice cap did not observably enhance volcanism, yet Yellowstone emits large volumes of CO2 due to melt crystallization at depth. Here we model mantle melting and CO2 release during the deglaciation of Yellowstone (using Iceland as a benchmark). We find mantle melting is enhanced 19-fold during deglaciation, generating an additional 250–620 km3. These melts segregate an additional 18–79 Gt of CO2 from the mantle, representing a ~3–15% increase in the global volcanic CO2 flux (if degassed immediately). We suggest deglaciation-enhanced mantle melting is important in continental settings with partially molten mantle – including Greenland and West Antarctica – potentially implying positive feedbacks between deglaciation and climate warming.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45890-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45890-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45890-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45890-z