Non-Hermitian non-equipartition theory for trapped particles
Xiao Li,
Yongyin Cao and
Jack Ng ()
Additional contact information
Xiao Li: Southern University of Science and Technology, Shenzhen
Yongyin Cao: School of Physics, Harbin Institute of Technology
Jack Ng: Southern University of Science and Technology, Shenzhen
Nature Communications, 2024, vol. 15, issue 1, 1-9
Abstract:
Abstract The equipartition theorem is an elegant cornerstone theory of thermal and statistical physics. However, it fails to address some contemporary problems, such as those associated with optical and acoustic trapping, due to the non-Hermitian nature of the external wave-induced force. We use stochastic calculus to solve the Langevin equation and thereby analytically generalize the equipartition theorem to a theory that we denote the non-Hermitian non-equipartition theory. We use the non-Hermitian non-equipartition theory to calculate the relevant statistics, which reveal that the averaged kinetic and potential energies are no longer equal to kBT/2 and are not equipartitioned. As examples, we apply non-Hermitian non-equipartition theory to derive the connection between the non-Hermitian trapping force and particle statistics, whereby measurement of the latter can determine the former. Furthermore, we apply a non-Hermitian force to convert a saddle potential into a stable potential, leading to a different type of stable state.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-46058-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46058-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-46058-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().