Coherent control of enhanced second-harmonic generation in a plasmonic nanocircuit using a transition metal dichalcogenide monolayer
Pei-Yuan Wu,
Wei-Qing Lee,
Chang-Hua Liu () and
Chen-Bin Huang ()
Additional contact information
Pei-Yuan Wu: National Tsing Hua University
Wei-Qing Lee: National Tsing Hua University
Chang-Hua Liu: National Tsing Hua University
Chen-Bin Huang: National Tsing Hua University
Nature Communications, 2024, vol. 15, issue 1, 1-7
Abstract:
Abstract Nonlinear nanophotonic circuits, renowned for their compact form and integration capabilities, hold potential for advancing high-capacity optical signal processing. However, limited practicality arises from low nonlinear conversion efficiency. Transition metal dichalcogenides (TMDs) could present a promising avenue to address this challenge, given their superior optical nonlinear characteristics and compatibility with diverse device platforms. Nevertheless, this potential remains largely unexplored, with current endeavors predominantly focusing on the demonstration of TMDs’ coherent nonlinear signals via free-space excitation and collection. In this work, we perform direct integration of TMDs onto a plasmonic nanocircuitry. By controlling the polarization angle of the input laser, we show selective routing of second-harmonic generation (SHG) signals from a MoSe2 monolayer within the plasmonic circuit. Routing extinction ratios of 14.86 dB are achieved, demonstrating good coherence preservation in this hybrid nanocircuit. Additionally, our characterization indicates that the integration of TMDs leads to a 13.8-fold SHG enhancement, compared with the pristine nonlinear plasmonic nanocircuitry. These distinct features—efficient SHG generation, coupling, and controllable routing—suggest that our hybrid TMD-plasmonic nanocircuitry could find immediate applications including on-chip optical frequency conversion, selective routing, switching, logic operations, as well as quantum operations.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-46209-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46209-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-46209-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().