EconPapers    
Economics at your fingertips  
 

Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries

Quanquan Guo, Wei Li, Xiaodong Li, Jiaxu Zhang, Davood Sabaghi, Jianjun Zhang, Bowen Zhang, Dongqi Li, Jingwei Du, Xingyuan Chu, Sein Chung, Kilwon Cho, Nguyen Ngan Nguyen, Zhongquan Liao, Zhen Zhang, Xinxing Zhang, Grégory F. Schneider, Thomas Heine, Minghao Yu () and Xinliang Feng ()
Additional contact information
Quanquan Guo: Technische Universität Dresden
Wei Li: Technische Universität Dresden
Xiaodong Li: Technische Universität Dresden
Jiaxu Zhang: Technische Universität Dresden
Davood Sabaghi: Technische Universität Dresden
Jianjun Zhang: Technische Universität Dresden
Bowen Zhang: Fraunhofer Institute for Ceramic Technologies and System (IKTS)
Dongqi Li: Technische Universität Dresden
Jingwei Du: Technische Universität Dresden
Xingyuan Chu: Technische Universität Dresden
Sein Chung: Pohang University of Science and Technology
Kilwon Cho: Pohang University of Science and Technology
Nguyen Ngan Nguyen: Technische Universität Dresden
Zhongquan Liao: Fraunhofer Institute for Ceramic Technologies and System (IKTS)
Zhen Zhang: University of Science and Technology of China
Xinxing Zhang: Sichuan University
Grégory F. Schneider: Leiden University
Thomas Heine: Technische Universität Dresden
Minghao Yu: Technische Universität Dresden
Xinliang Feng: Technische Universität Dresden

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract The pressing demand for sustainable energy storage solutions has spurred the burgeoning development of aqueous zinc batteries. However, kinetics-sluggish Zn2+ as the dominant charge carriers in cathodes leads to suboptimal charge-storage capacity and durability of aqueous zinc batteries. Here, we discover that an ultrathin two-dimensional polyimine membrane, featured by dual ion-transport nanochannels and rich proton-conduction groups, facilitates rapid and selective proton passing. Subsequently, a distinctive electrochemistry transition shifting from sluggish Zn2+-dominated to fast-kinetics H+-dominated Faradic reactions is achieved for high-mass-loading cathodes by using the polyimine membrane as an interfacial coating. Notably, the NaV3O8·1.5H2O cathode (10 mg cm−2) with this interfacial coating exhibits an ultrahigh areal capacity of 4.5 mAh cm−2 and a state-of-the-art energy density of 33.8 Wh m−2, along with apparently enhanced cycling stability. Additionally, we showcase the applicability of the interfacial proton-selective coating to different cathodes and aqueous electrolytes, validating its universality for developing reliable aqueous batteries.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-46464-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46464-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-46464-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46464-9