EconPapers    
Economics at your fingertips  
 

Direct observation of tunable thermal conductance at solid/porous crystalline solid interfaces induced by water adsorbates

Guang Wang, Hongzhao Fan, Jiawang Li, Zhigang Li and Yanguang Zhou ()
Additional contact information
Guang Wang: The Hong Kong University of Science and Technology, Clear Water Bay
Hongzhao Fan: The Hong Kong University of Science and Technology, Clear Water Bay
Jiawang Li: The Hong Kong University of Science and Technology, Clear Water Bay
Zhigang Li: The Hong Kong University of Science and Technology, Clear Water Bay
Yanguang Zhou: The Hong Kong University of Science and Technology, Clear Water Bay

Nature Communications, 2024, vol. 15, issue 1, 1-8

Abstract: Abstract Improving interfacial thermal transport is crucial for heat dissipation in devices with interfaces, such as electronics, buildings, and solar panels. Here, we design a strategy by utilizing the water adsorption-desorption process in porous metal-organic frameworks (MOFs) to tune the interfacial heat transfer, which could benefit their potential in cooling or heat dissipation applications. We observe a changeable thermal conductance across the solid/porous MOF interfaces owing to the dense water channel formed by the adsorbed water molecules in MOFs. Our experimental and/or modeling results show that the interfacial thermal conductance of Au/Cu3(BTC)2, Au/Zr6O4(OH)4(BDC)6 and Au/MOF-505 heterointerfaces is increased up to 7.1, 1.7 and 3.1 folds by this strategy, respectively, where Cu3(BTC)2 is referred to as HKUST-1 and Zr6O4(OH)4(BDC)6 is referred to as UiO-66. Our molecular dynamics simulations further show that the surface tension of Au layer will cause the adsorbed water molecules in MOFs to gather at the interfacial region. The dense water channel formed at the interfacial region can activate the high-frequency lattice vibrations and act as an additional thermal pathway, and then enhance heat transfer across the interfaces significantly. Our findings revealed the underlying mechanisms for tailoring thermal transport at the solid/porous MOF heterointerfaces by water adsorbates, which could motivate and benefit the new cooling system design based on MOFs.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-46473-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46473-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-46473-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46473-8