Direct observation of altermagnetic band splitting in CrSb thin films
Sonka Reimers,
Lukas Odenbreit,
Libor Šmejkal,
Vladimir N. Strocov,
Procopios Constantinou,
Anna B. Hellenes,
Rodrigo Jaeschke Ubiergo,
Warlley H. Campos,
Venkata K. Bharadwaj,
Atasi Chakraborty,
Thibaud Denneulin,
Wen Shi,
Rafal E. Dunin-Borkowski,
Suvadip Das,
Mathias Kläui,
Jairo Sinova and
Martin Jourdan ()
Additional contact information
Sonka Reimers: Johannes Gutenberg-Universität Mainz
Lukas Odenbreit: Johannes Gutenberg-Universität Mainz
Libor Šmejkal: Johannes Gutenberg-Universität Mainz
Vladimir N. Strocov: Paul Scherrer Institut
Procopios Constantinou: Paul Scherrer Institut
Anna B. Hellenes: Johannes Gutenberg-Universität Mainz
Rodrigo Jaeschke Ubiergo: Johannes Gutenberg-Universität Mainz
Warlley H. Campos: Johannes Gutenberg-Universität Mainz
Venkata K. Bharadwaj: Johannes Gutenberg-Universität Mainz
Atasi Chakraborty: Johannes Gutenberg-Universität Mainz
Thibaud Denneulin: Forschungszentrum Jülich
Wen Shi: Forschungszentrum Jülich
Rafal E. Dunin-Borkowski: Forschungszentrum Jülich
Suvadip Das: George Mason University
Mathias Kläui: Johannes Gutenberg-Universität Mainz
Jairo Sinova: Johannes Gutenberg-Universität Mainz
Martin Jourdan: Johannes Gutenberg-Universität Mainz
Nature Communications, 2024, vol. 15, issue 1, 1-7
Abstract:
Abstract Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spin-integrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations. In particular, we observe the distinctive splitting of an electronic band on a low-symmetry path in the Brilliouin zone that connects two points featuring symmetry-induced degeneracy. The measured large magnitude of the spin splitting of approximately 0.6 eV and the position of the band just below the Fermi energy underscores the significance of altermagnets for spintronics based on robust broken time reversal symmetry responses arising from exchange energy scales, akin to ferromagnets, while remaining insensitive to external magnetic fields and possessing THz dynamics, akin to antiferromagnets.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-024-46476-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46476-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-46476-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().