EconPapers    
Economics at your fingertips  
 

Surface hydrophobization of zeolite enables mass transfer matching in gas-liquid-solid three-phase hydrogenation under ambient pressure

Shuai Wang, Riming Hu, Jianyu Ren, Yipin Lv, Lianghao Song, Huaiqing Zhao, Xuchuan Jiang, Daowei Gao () and Guozhu Chen ()
Additional contact information
Shuai Wang: University of Jinan
Riming Hu: University of Jinan
Jianyu Ren: University of California San Diego
Yipin Lv: University of Jinan
Lianghao Song: Sungkyunkwan University
Huaiqing Zhao: University of Jinan
Xuchuan Jiang: University of Jinan
Daowei Gao: University of Jinan
Guozhu Chen: University of Jinan

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Attaining high hydrogenation performance under mild conditions, especially at ambient pressure, remains a considerable challenge due to the difficulty in achieving efficient mass transfer at the gas-liquid-solid three-phase interface. Here, we present a zeolite nanoreactor with joint gas-solid-liquid interfaces for boosting H2 gas and substrates to involve reactions. Specifically, the Pt active sites are encapsulated within zeolite crystals, followed by modifying the external zeolite surface with organosilanes. The silane sheath with aerophilic/hydrophobic properties can promote the diffusion of H2 and the mass transfer of reactant/product molecules. In aqueous solutions, the gaseous H2 molecules can rapidly diffuse into the zeolite channels, thereby augmenting H2 concentration surround Pt sites. Simultaneously, the silane sheath with lipophilicity nature promotes the enrichment of the aldehydes/ketones on the catalyst and facilitates the hydrophilia products of alcohol rediffusion back to the aqueous phase. By modifying the wettability of the catalyst, the hydrogenation of aldehydes/ketones can be operated in water at ambient H2 pressure, resulting in a noteworthy turnover frequency up to 92.3 h−1 and a 4.3-fold increase in reaction rate compared to the unmodified catalyst.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-46505-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46505-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-46505-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46505-3