Bee-pollination promotes rapid divergent evolution in plants growing in different soils
Thomas Dorey and
Florian P. Schiestl ()
Additional contact information
Thomas Dorey: University of Zürich
Florian P. Schiestl: University of Zürich
Nature Communications, 2024, vol. 15, issue 1, 1-14
Abstract:
Abstract Divergent evolution leads to variation among populations and thus promotes diversification. In plants, adaptation to different soils, pollinator guilds, and herbivores is thought to be a key ecological driver of adaptive divergence, but few studies have investigated this process experimentally. Here we use experimental evolution with fast cycling Brassica rapa plants to study the impact of soil, pollination, herbivory, and their interactions on divergent evolution in various traits during eight generations of selection. We found significant evolutionary changes in plant phenotypes caused by all three factors and their interactions. In the richer soil type, plants showed higher evolutionary rates, especially with bumblebee-pollination, which led to the evolution of increased attractiveness of plants to bumblebees. Plants that had experienced aphid-herbivory showed lower attractiveness. We found the strongest evolutionary divergence when plants evolved in different soils with bee-pollination rather than hand-pollination, irrespective of herbivory. This “soil-pollinator effect” impacted divergence in diverse suites of traits, for example leaf size, flowering time, flower petal length, some floral volatiles and leaf glucosinolates. We conclude that the interaction between soil and biotic pollination may be an important cause for divergent evolution of plants growing on different soil types, even without a shift in pollinator guilds.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-024-46841-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46841-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-46841-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().