An Intricate Network Involving the Argonaute ALG-1 Modulates Organismal Resistance to Oxidative Stress
Carlos A. Vergani-Junior,
Raíssa De P. Moro,
Silas Pinto,
Evandro A. De-Souza,
Henrique Camara,
Deisi L. Braga,
Guilherme Tonon-da-Silva,
Thiago L. Knittel,
Gabriel P. Ruiz,
Raissa G. Ludwig,
Katlin B. Massirer,
William B. Mair and
Marcelo A. Mori ()
Additional contact information
Carlos A. Vergani-Junior: Universidade Estadual de Campinas
Raíssa De P. Moro: Universidade Estadual de Campinas
Silas Pinto: Universidade Estadual de Campinas
Evandro A. De-Souza: Universidade Estadual de Campinas
Henrique Camara: Universidade Estadual de Campinas
Deisi L. Braga: Universidade Estadual de Campinas
Guilherme Tonon-da-Silva: Universidade Estadual de Campinas
Thiago L. Knittel: Universidade Estadual de Campinas
Gabriel P. Ruiz: Universidade Estadual de Campinas
Raissa G. Ludwig: Universidade Estadual de Campinas
Katlin B. Massirer: Universidade Estadual de Campinas
William B. Mair: Harvard University
Marcelo A. Mori: Universidade Estadual de Campinas
Nature Communications, 2024, vol. 15, issue 1, 1-15
Abstract:
Abstract Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms’ ability to withstand oxidative stress.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-47306-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47306-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-47306-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().