Mechanism and structural dynamics of sulfur transfer during de novo [2Fe-2S] cluster assembly on ISCU2
Vinzent Schulz,
Ralf Steinhilper,
Jonathan Oltmanns,
Sven-A. Freibert,
Nils Krapoth,
Uwe Linne,
Sonja Welsch,
Maren H. Hoock,
Volker Schünemann,
Bonnie J. Murphy () and
Roland Lill ()
Additional contact information
Vinzent Schulz: Institut für Zytobiologie, Philipps-Universität Marburg
Ralf Steinhilper: Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics
Jonathan Oltmanns: Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau
Sven-A. Freibert: Institut für Zytobiologie, Philipps-Universität Marburg
Nils Krapoth: Institut für Zytobiologie, Philipps-Universität Marburg
Uwe Linne: Mass Spectrometry Facility of the Department of Chemistry, Philipps-Universität Marburg
Sonja Welsch: Max Planck Institute of Biophysics
Maren H. Hoock: Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau
Volker Schünemann: Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau
Bonnie J. Murphy: Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics
Roland Lill: Institut für Zytobiologie, Philipps-Universität Marburg
Nature Communications, 2024, vol. 15, issue 1, 1-15
Abstract:
Abstract Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich’s ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin’s molecular role in this fundamental process.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-024-47310-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47310-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-47310-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().