EconPapers    
Economics at your fingertips  
 

Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet

Davide Girardi, Simone Finizio, Claire Donnelly, Guglielmo Rubini, Sina Mayr, Valerio Levati, Simone Cuccurullo, Federico Maspero, Jörg Raabe, Daniela Petti () and Edoardo Albisetti ()
Additional contact information
Davide Girardi: Politecnico di Milano; Piazza Leonardo da Vinci 32
Simone Finizio: Paul Scherrer Institut; Forschungsstrasse 111 5232 PSI
Claire Donnelly: Max Planck Institute for Chemical Physics of Solids; Nöthnitzer Str. 40
Guglielmo Rubini: Politecnico di Milano; Piazza Leonardo da Vinci 32
Sina Mayr: Paul Scherrer Institut; Forschungsstrasse 111 5232 PSI
Valerio Levati: Politecnico di Milano; Piazza Leonardo da Vinci 32
Simone Cuccurullo: Politecnico di Milano; Piazza Leonardo da Vinci 32
Federico Maspero: Politecnico di Milano; Piazza Leonardo da Vinci 32
Jörg Raabe: Paul Scherrer Institut; Forschungsstrasse 111 5232 PSI
Daniela Petti: Politecnico di Milano; Piazza Leonardo da Vinci 32
Edoardo Albisetti: Politecnico di Milano; Piazza Leonardo da Vinci 32

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract Spin waves are collective perturbations in the orientation of the magnetic moments in magnetically ordered materials. Their rich phenomenology is intrinsically three-dimensional; however, the three-dimensional imaging of spin waves has so far not been possible. Here, we image the three-dimensional dynamics of spin waves excited in a synthetic antiferromagnet, with nanoscale spatial resolution and sub-ns temporal resolution, using time-resolved magnetic laminography. In this way, we map the distribution of the spin-wave modes throughout the volume of the structure, revealing unexpected depth-dependent profiles originating from the interlayer dipolar interaction. We experimentally demonstrate the existence of complex three-dimensional interference patterns and analyze them via micromagnetic modelling. We find that these patterns are generated by the superposition of spin waves with non-uniform amplitude profiles, and that their features can be controlled by tuning the composition and structure of the magnetic system. Our results open unforeseen possibilities for the study and manipulation of complex spin-wave modes within nanostructures and magnonic devices.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-47339-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47339-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-47339-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47339-9