EconPapers    
Economics at your fingertips  
 

Comparative quantum-classical dynamics of natural and synthetic molecular rotors show how vibrational synchronization modulates the photoisomerization quantum efficiency

Alejandro Blanco-Gonzalez, Madushanka Manathunga, Xuchun Yang and Massimo Olivucci ()
Additional contact information
Alejandro Blanco-Gonzalez: Bowling Green State University
Madushanka Manathunga: Bowling Green State University
Xuchun Yang: Bowling Green State University
Massimo Olivucci: Bowling Green State University

Nature Communications, 2024, vol. 15, issue 1, 1-14

Abstract: Abstract We use quantum-classical trajectories to investigate the origin of the different photoisomerization quantum efficiency observed in the dim-light visual pigment Rhodopsin and in the light-driven biomimetic molecular rotor para-methoxy N-methyl indanylidene-pyrrolinium (MeO-NAIP) in methanol. Our results reveal that effective light-energy conversion requires, in general, an auxiliary molecular vibration (called promoter) that does not correspond to the rotary motion but synchronizes with it at specific times. They also reveal that Nature has designed Rhodopsin to exploit two mechanisms working in a vibrationally coherent regime. The first uses a wag promoter to ensure that ca. 75% of the absorbed photons lead to unidirectional rotations. The second mechanism ensures that the same process is fast enough to avoid directional randomization. It is found that MeO-NAIP in methanol is incapable of exploiting the above mechanisms resulting into a 50% quantum efficiency loss. However, when the solvent is removed, MeO-NAIP rotation is predicted to synchronize with a ring-inversion promoter leading to a 30% increase in quantum efficiency and, therefore, biomimetic behavior.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-47477-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47477-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-47477-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47477-0