EconPapers    
Economics at your fingertips  
 

Moderate greenhouse climate and rapid carbonate formation after Marinoan snowball Earth

Lennart Ramme (), Tatiana Ilyina and Jochem Marotzke
Additional contact information
Lennart Ramme: Max Planck Institute for Meteorology
Tatiana Ilyina: Max Planck Institute for Meteorology
Jochem Marotzke: Max Planck Institute for Meteorology

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract When the Marinoan snowball Earth deglaciated in response to high atmospheric carbon dioxide (CO2) concentrations, the planet warmed rapidly. It is commonly hypothesized that the ensuing supergreenhouse climate then declined slowly over hundreds of thousands of years through continental weathering. However, how the ocean affected atmospheric CO2 in the snowball Earth aftermath has never been quantified. Here we show that the ocean’s carbon cycle drives the supergreenhouse climate evolution via a set of different mechanisms, triggering scenarios ranging from a rapid decline to an intensification of the supergreenhouse climate. We further identify the rapid formation of carbonate sediments from pre-existing ocean alkalinity as a possible explanation for the enigmatic origin of Marinoan cap dolostones. This work demonstrates that a moderate and relatively short-lived supergreenhouse climate following the Marinoan snowball Earth is a plausible scenario that is in accordance with geological data, challenging the previous hypothesis.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-47873-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47873-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-47873-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47873-6