5′UTR G-quadruplex structure enhances translation in size dependent manner
Chun-Ying Lee,
Meera Joshi,
Ashley Wang and
Sua Myong ()
Additional contact information
Chun-Ying Lee: Johns Hopkins University
Meera Joshi: Johns Hopkins University
Ashley Wang: Johns Hopkins University
Sua Myong: Johns Hopkins University
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract Translation initiation in bacteria is frequently regulated by various structures in the 5′ untranslated region (5′UTR). Previously, we demonstrated that G-quadruplex (G4) formation in non-template DNA enhances transcription. In this study, we aim to explore how G4 formation in mRNA (RG4) at 5′UTR impacts translation using a T7-based in vitro translation system and in E. coli. We show that RG4 strongly promotes translation efficiency in a size-dependent manner. Additionally, inserting a hairpin upstream of the RG4 further enhances translation efficiency, reaching up to a 12-fold increase. We find that the RG4-dependent effect is not due to increased ribosome affinity, ribosome binding site accessibility, or mRNA stability. We propose a physical barrier model in which bulky structures in 5′UTR biases ribosome movement toward the downstream start codon, thereby increasing the translation output. This study provides biophysical insights into the regulatory role of 5′UTR structures in in vitro and bacterial translation, highlighting their potential applications in tuning gene expression.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-48247-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48247-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-48247-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().