EconPapers    
Economics at your fingertips  
 

Human-induced intensified seasonal cycle of sea surface temperature

Fukai Liu (), Fengfei Song () and Yiyong Luo ()
Additional contact information
Fukai Liu: Ocean University of China
Fengfei Song: Ocean University of China
Yiyong Luo: Ocean University of China

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Changes in the seasonal cycle of sea surface temperature (SST) have far-reaching ecological and societal implications. Previous studies have found an intensified SST seasonal cycle under global warming, but whether such changes have emerged in historical records remains largely unknown. Here, we reveal that the SST seasonal cycle globally has intensified by 3.9 ± 1.6% in recent four decades (1983–2022), with hotspot regions such as the northern subpolar gyres experiencing an intensification of up to 10%. Increased greenhouse gases are the primary driver of this intensification, and decreased anthropogenic aerosols also contribute. These changes in anthropogenic emissions lead to shallower mixed layer depths, reducing the thermal inertia of upper ocean and enhancing the seasonality of SST. In addition, the direct impacts of increased ocean heat uptake and suppressed seasonal amplitude of surface heat flux also contribute in the North Pacific and North Atlantic. The temperature seasonal cycle is intensified not only at the ocean surface, but throughout the mixed layer. The ramifications of this intensified SST seasonal cycle extend to the seasonal variation in upper-ocean oxygenation, a critical factor for most ocean ecosystems.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-48381-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48381-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-48381-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48381-3