EconPapers    
Economics at your fingertips  
 

Non-linear relationships between daily temperature extremes and US agricultural yields uncovered by global gridded meteorological datasets

Dylan Hogan () and Wolfram Schlenker
Additional contact information
Dylan Hogan: Columbia University School of International and Public Affairs
Wolfram Schlenker: NBER and CEPR

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Global agricultural commodity markets are highly integrated among major producers. Prices are driven by aggregate supply rather than what happens in individual countries in isolation. Estimating the effects of weather-induced shocks on production, trade patterns and prices hence requires a globally representative weather data set. Recently, two data sets that provide daily or hourly records, GMFD and ERA5-Land, became available. Starting with the US, a data rich region, we formally test whether these global data sets are as good as more fine-scaled country-specific data in explaining yields and whether they estimate similar response functions. While GMFD and ERA5-Land have lower predictive skill for US corn and soybeans yields than the fine-scaled PRISM data, they still correctly uncover the underlying non-linear temperature relationship. All specifications using daily temperature extremes under any of the weather data sets outperform models that use a quadratic in average temperature. Correctly capturing the effect of daily extremes has a larger effect than the choice of weather data. In a second step, focusing on Sub Saharan Africa, a data sparse region, we confirm that GMFD and ERA5-Land have superior predictive power to CRU, a global weather data set previously employed for modeling climate effects in the region.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-48388-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48388-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-48388-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48388-w