EconPapers    
Economics at your fingertips  
 

Quantum coherence and interference of a single moiré exciton in nano-fabricated twisted monolayer semiconductor heterobilayers

Haonan Wang, Heejun Kim, Duanfei Dong, Keisuke Shinokita, Kenji Watanabe, Takashi Taniguchi and Kazunari Matsuda ()
Additional contact information
Haonan Wang: Kyoto University
Heejun Kim: Kyoto University
Duanfei Dong: Kyoto University
Keisuke Shinokita: Kyoto University
Kenji Watanabe: National Institute for Materials Science
Takashi Taniguchi: National Institute for Materials Science
Kazunari Matsuda: Kyoto University

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract The moiré potential serves as a periodic quantum confinement for optically generated excitons, creating spatially ordered zero-dimensional quantum systems. However, a broad emission spectrum resulting from inhomogeneity among moiré potentials hinders the investigation of their intrinsic properties. In this study, we demonstrated a method for the optical observation of quantum coherence and interference of a single moiré exciton in a twisted semiconducting heterobilayer beyond the diffraction limit of light. We observed a single and sharp photoluminescence peak from a single moiré exciton following nanofabrication. Our findings revealed the extended duration of quantum coherence in a single moiré exciton, persisting beyond 10 ps, and an accelerated decoherence process with increasing temperature and excitation power density. Moreover, quantum interference experiments revealed the coupling between moiré excitons in different moiré potential minima. The observed quantum coherence and interference of moiré exciton will facilitate potential applications of moiré quantum systems in quantum technologies.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-48623-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48623-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-48623-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48623-4