EconPapers    
Economics at your fingertips  
 

In-depth organic mass cytometry reveals differential contents of 3-hydroxybutanoic acid at the single-cell level

Shaojie Qin, Yi Zhang, Mingying Shi, Daiyu Miao, Jiansen Lu, Lu Wen and Yu Bai ()
Additional contact information
Shaojie Qin: Peking University
Yi Zhang: Peking University
Mingying Shi: Peking University
Daiyu Miao: Peking University
Jiansen Lu: Peking University
Lu Wen: Peking University
Yu Bai: Peking University

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract Comprehensive single-cell metabolic profiling is critical for revealing phenotypic heterogeneity and elucidating the molecular mechanisms underlying biological processes. However, single-cell metabolomics remains challenging because of the limited metabolite coverage and inability to discriminate isomers. Herein, we establish a single-cell metabolomics platform for in-depth organic mass cytometry. Extended single-cell analysis time guarantees sufficient MS/MS acquisition for metabolite identification and the isomers discrimination while online sampling ensures the high-throughput of the method. The largest number of identified metabolites (approximately 600) are achieved in single cells and fine subtyping of MCF-7 cells is first demonstrated by an investigation on the differential levels of 3-hydroxybutanoic acid among clusters. Single-cell transcriptome analysis reveals differences in the expression of 3-hydroxybutanoic acid downstream antioxidative stress genes, such as metallothionein 2 (MT2A), while a fluorescence-activated cell sorting assay confirms the positive relationship between 3-hydroxybutanoic acid and target proteins; these results suggest that the heterogeneity of 3-hydroxybutanoic acid provides cancer cells with different ability to resist surrounding oxidative stress. Our method paves the way for deep single-cell metabolome profiling and investigations on the physiological and pathological processes that occur during cancer.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-48865-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48865-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-48865-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48865-2