ChatMOF: an artificial intelligence system for predicting and generating metal-organic frameworks using large language models
Yeonghun Kang and
Jihan Kim ()
Additional contact information
Yeonghun Kang: Korea Advanced Institute of Science and Technology (KAIST)
Jihan Kim: Korea Advanced Institute of Science and Technology (KAIST)
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract ChatMOF is an artificial intelligence (AI) system that is built to predict and generate metal-organic frameworks (MOFs). By leveraging a large-scale language model (GPT-4, GPT-3.5-turbo, and GPT-3.5-turbo-16k), ChatMOF extracts key details from textual inputs and delivers appropriate responses, thus eliminating the necessity for rigid and formal structured queries. The system is comprised of three core components (i.e., an agent, a toolkit, and an evaluator) and it forms a robust pipeline that manages a variety of tasks, including data retrieval, property prediction, and structure generations. ChatMOF shows high accuracy rates of 96.9% for searching, 95.7% for predicting, and 87.5% for generating tasks with GPT-4. Additionally, it successfully creates materials with user-desired properties from natural language. The study further explores the merits and constraints of utilizing large language models (LLMs) in combination with database and machine learning in material sciences and showcases its transformative potential for future advancements.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-48998-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48998-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-48998-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().