EconPapers    
Economics at your fingertips  
 

Picosecond reactions of excited radical ion super-reductants

Björn Pfund, Deyanira Gejsnæs-Schaad, Bruno Lazarevski and Oliver S. Wenger ()
Additional contact information
Björn Pfund: University of Basel
Deyanira Gejsnæs-Schaad: University of Basel
Bruno Lazarevski: University of Basel
Oliver S. Wenger: University of Basel

Nature Communications, 2024, vol. 15, issue 1, 1-7

Abstract: Abstract Classical photochemistry requires nanosecond excited-state lifetimes for diffusion-controlled reactions. Excited radicals with picosecond lifetimes have been implied by numerous photoredox studies, and controversy has arisen as to whether they can actually be catalytically active. We provide direct evidence for the elusive pre-association between radical ions and substrate molecules, enabling photoinduced electron transfer beyond the diffusion limit. A strategy based on two distinct light absorbers, mimicking the natural photosystems I and II, is used to generate excited radicals, unleashing extreme reduction power and activating C(sp2)―Cl and C(sp2)―F bonds. Our findings provide a long-sought mechanistic understanding for many previous synthetically-oriented works and permit more rational future photoredox reaction development. The newly developed excitation strategy pushes the current limits of reactions based on multi-photon excitation and very short-lived but highly redox active species.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-49006-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49006-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-49006-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49006-5