Ultra-high-granularity detector simulation with intra-event aware generative adversarial network and self-supervised relational reasoning
Baran Hashemi (),
Nikolai Hartmann,
Sahand Sharifzadeh,
James Kahn and
Thomas Kuhr
Additional contact information
Baran Hashemi: Technical University Munich
Nikolai Hartmann: Ludwig Maximilians University in Munich
Sahand Sharifzadeh: Ludwig Maximilians University in Munich
James Kahn: Helmholtz AI
Thomas Kuhr: Ludwig Maximilians University in Munich
Nature Communications, 2024, vol. 15, issue 1, 1-16
Abstract:
Abstract Simulating high-resolution detector responses is a computationally intensive process that has long been challenging in Particle Physics. Despite the ability of generative models to streamline it, full ultra-high-granularity detector simulation still proves to be difficult as it contains correlated and fine-grained information. To overcome these limitations, we propose Intra-Event Aware Generative Adversarial Network (IEA-GAN). IEA-GAN presents a Transformer-based Relational Reasoning Module that approximates an event in detector simulation, generating contextualized high-resolution full detector responses with a proper relational inductive bias. IEA-GAN also introduces a Self-Supervised intra-event aware loss and Uniformity loss, significantly enhancing sample fidelity and diversity. We demonstrate IEA-GAN’s application in generating sensor-dependent images for the ultra-high-granularity Pixel Vertex Detector (PXD), with more than 7.5 M information channels at the Belle II Experiment. Applications of this work span from Foundation Models for high-granularity detector simulation, such as at the HL-LHC (High Luminosity LHC), to simulation-based inference and fine-grained density estimation.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49104-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49104-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49104-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().