Bulk-suppressed and surface-sensitive Raman scattering by transferable plasmonic membranes with irregular slot-shaped nanopores
Roman M. Wyss,
Günter Kewes,
Pietro Marabotti,
Stefan M. Koepfli,
Karl-Philipp Schlichting,
Markus Parzefall,
Eric Bonvin,
Martin F. Sarott,
Morgan Trassin,
Maximilian Oezkent,
Chen-Hsun Lu,
Kevin-P. Gradwohl,
Thomas Perrault,
Lala Habibova,
Giorgia Marcelli,
Marcela Giraldo,
Jan Vermant,
Lukas Novotny,
Martin Frimmer,
Mads C. Weber and
Sebastian Heeg ()
Additional contact information
Roman M. Wyss: Humboldt-Universität zu Berlin
Günter Kewes: Humboldt-Universität zu Berlin
Pietro Marabotti: Humboldt-Universität zu Berlin
Stefan M. Koepfli: Institute of Electromagnetic Fields (IEF)
Karl-Philipp Schlichting: Laboratory of Thermodynamics in Emerging Technologies Department of Mechanical and Process Engineering
Markus Parzefall: Photonics Lab
Eric Bonvin: Photonics Lab
Martin F. Sarott: Department of Materials
Morgan Trassin: Department of Materials
Maximilian Oezkent: Leibniz-Institut für Kristallzüchtung
Chen-Hsun Lu: Leibniz-Institut für Kristallzüchtung
Kevin-P. Gradwohl: Leibniz-Institut für Kristallzüchtung
Thomas Perrault: Le Mans Université
Lala Habibova: Humboldt-Universität zu Berlin
Giorgia Marcelli: Humboldt-Universität zu Berlin
Marcela Giraldo: Department of Materials
Jan Vermant: Department of Materials
Lukas Novotny: Photonics Lab
Martin Frimmer: Photonics Lab
Mads C. Weber: Le Mans Université
Sebastian Heeg: Humboldt-Universität zu Berlin
Nature Communications, 2024, vol. 15, issue 1, 1-11
Abstract:
Abstract Raman spectroscopy enables the non-destructive characterization of chemical composition, crystallinity, defects, or strain in countless materials. However, the Raman response of surfaces or thin films is often weak and obscured by dominant bulk signals. Here we overcome this limitation by placing a transferable porous gold membrane, (PAuM) on the surface of interest. Slot-shaped nanopores in the membrane act as plasmonic antennas and enhance the Raman response of the surface or thin film underneath. Simultaneously, the PAuM suppresses the penetration of the excitation laser into the bulk, efficiently blocking its Raman signal. Using graphene as a model surface, we show that this method increases the surface-to-bulk Raman signal ratio by three orders of magnitude. We find that 90% of the Raman enhancement occurs within the top 2.5 nm of the material, demonstrating truly surface-sensitive Raman scattering. To validate our approach, we quantify the strain in a 12.5 nm thin Silicon film and analyze the surface of a LaNiO3 thin film. We observe a Raman mode splitting for the LaNiO3 surface-layer, which is spectroscopic evidence that the surface structure differs from the bulk. These results validate that PAuM gives direct access to Raman signatures of thin films and surfaces.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49130-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49130-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49130-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().