EconPapers    
Economics at your fingertips  
 

The SpinBus architecture for scaling spin qubits with electron shuttling

Matthias Künne, Alexander Willmes, Max Oberländer, Christian Gorjaew, Julian D. Teske, Harsh Bhardwaj, Max Beer, Eugen Kammerloher, René Otten, Inga Seidler, Ran Xue, Lars R. Schreiber () and Hendrik Bluhm ()
Additional contact information
Matthias Künne: Forschungszentrum Jülich GmbH and RWTH Aachen University
Alexander Willmes: Forschungszentrum Jülich GmbH and RWTH Aachen University
Max Oberländer: Forschungszentrum Jülich GmbH and RWTH Aachen University
Christian Gorjaew: Forschungszentrum Jülich GmbH and RWTH Aachen University
Julian D. Teske: Forschungszentrum Jülich GmbH and RWTH Aachen University
Harsh Bhardwaj: Forschungszentrum Jülich GmbH and RWTH Aachen University
Max Beer: Forschungszentrum Jülich GmbH and RWTH Aachen University
Eugen Kammerloher: Forschungszentrum Jülich GmbH and RWTH Aachen University
René Otten: Forschungszentrum Jülich GmbH and RWTH Aachen University
Inga Seidler: Forschungszentrum Jülich GmbH and RWTH Aachen University
Ran Xue: Forschungszentrum Jülich GmbH and RWTH Aachen University
Lars R. Schreiber: Forschungszentrum Jülich GmbH and RWTH Aachen University
Hendrik Bluhm: Forschungszentrum Jülich GmbH and RWTH Aachen University

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract Quantum processor architectures must enable scaling to large qubit numbers while providing two-dimensional qubit connectivity and exquisite operation fidelities. For microwave-controlled semiconductor spin qubits, dense arrays have made considerable progress, but are still limited in size by wiring fan-out and exhibit significant crosstalk between qubits. To overcome these limitations, we introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence. Device simulations for all relevant operations in the Si/SiGe platform validate the feasibility with established semiconductor patterning technology and operation fidelities exceeding 99.9%. Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits. Building on the theoretical feasibility of high-fidelity spin-coherent electron shuttling as key enabling factor, the SpinBus architecture may be the basis for a spin-based quantum processor that meets the scalability requirements for practical quantum computing.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-49182-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49182-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-49182-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49182-4