EconPapers    
Economics at your fingertips  
 

Prospects of a thousand-ion Sn2+ Coulomb-crystal clock with sub-10−19 inaccuracy

David R. Leibrandt (), Sergey G. Porsev, Charles Cheung and Marianna S. Safronova
Additional contact information
David R. Leibrandt: University of California
Sergey G. Porsev: University of Delaware
Charles Cheung: University of Delaware
Marianna S. Safronova: University of Delaware

Nature Communications, 2024, vol. 15, issue 1, 1-12

Abstract: Abstract Optical atomic clocks are the most accurate and precise measurement devices of any kind, enabling advances in international timekeeping, Earth science, fundamental physics, and more. However, there is a fundamental tradeoff between accuracy and precision, where higher precision is achieved by using more atoms, but this comes at the cost of larger interactions between the atoms that limit the accuracy. Here, we propose a many-ion optical atomic clock based on three-dimensional Coulomb crystals of order one thousand Sn2+ ions confined in a linear RF Paul trap with the potential to overcome this limitation. Sn2+ has a unique combination of features that is not available in previously considered ions: a 1S0 ↔ 3P0 clock transition between two states with zero electronic and nuclear angular momentum (I = J = F = 0) making it immune to nonscalar perturbations, a negative differential polarizability making it possible to operate the trap in a manner such that the two dominant shifts for three-dimensional ion crystals cancel each other, and a laser-accessible transition suitable for direct laser cooling and state readout. We present calculations of the differential polarizability, other relevant atomic properties, and the motion of ions in large Coulomb crystals, in order to estimate the achievable accuracy and precision of Sn2+ Coulomb-crystal clocks.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-49241-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49241-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-49241-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49241-w