EconPapers    
Economics at your fingertips  
 

Neural network variational Monte Carlo for positronic chemistry

Gino Cassella (), W. M. C. Foulkes, David Pfau and James S. Spencer
Additional contact information
Gino Cassella: Imperial College London
W. M. C. Foulkes: Imperial College London
David Pfau: Imperial College London
James S. Spencer: DeepMind

Nature Communications, 2024, vol. 15, issue 1, 1-7

Abstract: Abstract Quantum chemical calculations of the ground-state properties of positron-molecule complexes are challenging. The main difficulty lies in employing an appropriate basis set for representing the coalescence between electrons and a positron. Here, we tackle this problem with the recently developed Fermionic neural network (FermiNet) wavefunction, which does not depend on a basis set. We find that FermiNet produces highly accurate, in some cases state-of-the-art, ground-state energies across a range of atoms and small molecules with a wide variety of qualitatively distinct positron binding characteristics. We calculate the binding energy of the challenging non-polar benzene molecule, finding good agreement with the experimental value, and obtain annihilation rates which compare favourably with those obtained with explicitly correlated Gaussian wavefunctions. Our results demonstrate a generic advantage of neural network wavefunction-based methods and broaden their applicability to systems beyond the standard molecular Hamiltonian.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-49290-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49290-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-49290-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49290-1