Artificial cellulosic leaf with adjustable enzymatic CO2 sequestration capability
Xing Zhu (),
Chenxi Du,
Bo Gao and
Bin He ()
Additional contact information
Xing Zhu: Shaanxi University of Science & Technology
Chenxi Du: Shaanxi University of Science & Technology
Bo Gao: Northwest University
Bin He: Shaanxi University of Science & Technology
Nature Communications, 2024, vol. 15, issue 1, 1-12
Abstract:
Abstract Developing artificial leaves to address the environmental burden of CO2 is pivotal for advancing our Net Zero Future. In this study, we introduce EcoLeaf, an artificial leaf that closely mimics the characteristics of natural leaves. It harnesses visible light as its sole energy source and orchestrates the controlled expansion and contraction of stomata and the exchange of petiole materials to govern the rate of CO2 sequestration from the atmosphere. Furthermore, EcoLeaf has a cellulose composition and mechanical strength similar to those of natural leaves, allowing it to seamlessly integrate into the ecosystem during use and participate in natural degradation and nutrient cycling processes at the end of its life. We propose that the carbon sequestration pathway within EcoLeaf is adaptable and can serve as a versatile biomimetic platform for diverse biogenic carbon sequestration pathways in the future.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49320-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49320-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49320-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().