Ecological drivers of ultraviolet colour evolution in snakes
Hayley L. Crowell,
John David Curlis,
Hannah I. Weller and
Alison R. Davis Rabosky ()
Additional contact information
Hayley L. Crowell: University of Michigan
John David Curlis: University of Michigan
Hannah I. Weller: Brown University
Alison R. Davis Rabosky: University of Michigan
Nature Communications, 2024, vol. 15, issue 1, 1-9
Abstract:
Abstract Ultraviolet (UV) colour patterns invisible to humans are widespread in nature. However, research bias favouring species with conspicuous colours under sexual selection can limit our assessment of other ecological drivers of UV colour, like interactions between predators and prey. Here we demonstrate widespread UV colouration across Western Hemisphere snakes and find stronger support for a predator defence function than for reproduction. We find that UV colouration has evolved repeatedly in species with ecologies most sensitive to bird predation, with no sexual dichromatism at any life stage. By modelling visual systems of potential predators, we find that snake conspicuousness correlates with UV colouration and predator cone number, providing a plausible mechanism for selection. Our results suggest that UV reflectance should not be assumed absent in “cryptically coloured” animals, as signalling beyond human visual capacities may be a key outcome of species interactions in many taxa for which UV colour is likely underreported.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49506-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49506-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49506-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().