EconPapers    
Economics at your fingertips  
 

Microenvironment regulation breaks the Faradaic efficiency-current density trade-off for electrocatalytic deuteration using D2O

Meng He, Rui Li, Chuanqi Cheng, Cuibo Liu () and Bin Zhang ()
Additional contact information
Meng He: Tianjin University
Rui Li: Tianjin University
Chuanqi Cheng: Tianjin University
Cuibo Liu: Tianjin University
Bin Zhang: Tianjin University

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract The high Faradaic efficiency (FE) of the electrocatalytic deuteration of organics with D2O at a large current density is significant for deuterated electrosynthesis. However, the FE and current density are the two ends of a seesaw because of the severe D2 evolution side reaction at nearly industrial current densities. Herein, we report a combined scenario of a nanotip-enhanced electric field and surfactant-modified interface microenvironment to enable the electrocatalytic deuteration of arylacetonitrile in D2O with an 80% FE at −100 mA cm−2. The increased concentration with low activation energy of arylacetonitrile due to the large electric field along the tips and the accelerated arylacetonitrile transfer and suppressed D2 evolution by the surfactant-created deuterophobic microenvironment contribute to breaking the trade-off between a high FE and large current density. Furthermore, the application of our strategy in other deuteration reactions with improved Faradaic efficiencies at −100 mA cm−2 rationalizes the design concept.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-49544-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49544-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-49544-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49544-y