EconPapers    
Economics at your fingertips  
 

The crucial role of circular waste management systems in cutting waste leakage into aquatic environments

Adriana Gómez-Sanabria () and Florian Lindl
Additional contact information
Adriana Gómez-Sanabria: Climate and Environment Program, International Institute for Applied Systems Analysis
Florian Lindl: Climate and Environment Program, International Institute for Applied Systems Analysis

Nature Communications, 2024, vol. 15, issue 1, 1-13

Abstract: Abstract Waste leakage has become a major global concern owing to the negative impacts on aquatic ecosystems and human health. We combine spatial analysis with the Shared Socioeconomic Pathways to project future waste leakage under current conditions and develop mitigation strategies up to 2040. Here we show that the majority (70%) of potential leakage of municipal solid waste into aquatic environments occurs in China, South Asia, Africa, and India. We show the need for the adoption of active mitigation strategies, in particular circular waste management systems, that could stop waste from entering the aquatic ecosystems in the first place. However, even in a scenario representing a sustainable world in which technical, social, and financial barriers are overcome and public awareness and participation to rapidly increase waste collection rates, reduce, reuse and recycling waste exist, it would be impossible to entirely eliminate waste leakage before 2030, failing to meet the waste-related Sustainable Development Goals.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-49555-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49555-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-49555-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49555-9